1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
use core::sync::atomic::{AtomicU8, Ordering};
use std::cell::{RefCell, UnsafeCell};
use std::mem::MaybeUninit;
use std::sync::{Condvar, Mutex, Once};
use std::time::{Duration as StdDuration, Instant as StdInstant};
use std::{mem, ptr, thread};

use critical_section::Mutex as CsMutex;

use crate::driver::{AlarmHandle, Driver};

const ALARM_COUNT: usize = 4;

struct AlarmState {
    timestamp: u64,

    // This is really a Option<(fn(*mut ()), *mut ())>
    // but fn pointers aren't allowed in const yet
    callback: *const (),
    ctx: *mut (),
}

unsafe impl Send for AlarmState {}

impl AlarmState {
    const fn new() -> Self {
        Self {
            timestamp: u64::MAX,
            callback: ptr::null(),
            ctx: ptr::null_mut(),
        }
    }
}

struct TimeDriver {
    alarm_count: AtomicU8,

    once: Once,
    // The STD Driver implementation requires the alarms' mutex to be reentrant, which the STD Mutex isn't
    // Fortunately, mutexes based on the `critical-section` crate are reentrant, because the critical sections
    // themselves are reentrant
    alarms: UninitCell<CsMutex<RefCell<[AlarmState; ALARM_COUNT]>>>,
    zero_instant: UninitCell<StdInstant>,
    signaler: UninitCell<Signaler>,
}

const ALARM_NEW: AlarmState = AlarmState::new();
crate::time_driver_impl!(static DRIVER: TimeDriver = TimeDriver {
    alarm_count: AtomicU8::new(0),

    once: Once::new(),
    alarms: UninitCell::uninit(),
    zero_instant: UninitCell::uninit(),
    signaler: UninitCell::uninit(),
});

impl TimeDriver {
    fn init(&self) {
        self.once.call_once(|| unsafe {
            self.alarms.write(CsMutex::new(RefCell::new([ALARM_NEW; ALARM_COUNT])));
            self.zero_instant.write(StdInstant::now());
            self.signaler.write(Signaler::new());

            thread::spawn(Self::alarm_thread);
        });
    }

    fn alarm_thread() {
        let zero = unsafe { DRIVER.zero_instant.read() };
        loop {
            let now = DRIVER.now();

            let next_alarm = critical_section::with(|cs| {
                let alarms = unsafe { DRIVER.alarms.as_ref() }.borrow(cs);
                loop {
                    let pending = alarms
                        .borrow_mut()
                        .iter_mut()
                        .find(|alarm| alarm.timestamp <= now)
                        .map(|alarm| {
                            alarm.timestamp = u64::MAX;

                            (alarm.callback, alarm.ctx)
                        });

                    if let Some((callback, ctx)) = pending {
                        // safety:
                        // - we can ignore the possiblity of `f` being unset (null) because of the safety contract of `allocate_alarm`.
                        // - other than that we only store valid function pointers into alarm.callback
                        let f: fn(*mut ()) = unsafe { mem::transmute(callback) };
                        f(ctx);
                    } else {
                        // No alarm due
                        break;
                    }
                }

                alarms
                    .borrow()
                    .iter()
                    .map(|alarm| alarm.timestamp)
                    .min()
                    .unwrap_or(u64::MAX)
            });

            // Ensure we don't overflow
            let until = zero
                .checked_add(StdDuration::from_micros(next_alarm))
                .unwrap_or_else(|| StdInstant::now() + StdDuration::from_secs(1));

            unsafe { DRIVER.signaler.as_ref() }.wait_until(until);
        }
    }
}

impl Driver for TimeDriver {
    fn now(&self) -> u64 {
        self.init();

        let zero = unsafe { self.zero_instant.read() };
        StdInstant::now().duration_since(zero).as_micros() as u64
    }

    unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
        let id = self.alarm_count.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
            if x < ALARM_COUNT as u8 {
                Some(x + 1)
            } else {
                None
            }
        });

        match id {
            Ok(id) => Some(AlarmHandle::new(id)),
            Err(_) => None,
        }
    }

    fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
        self.init();
        critical_section::with(|cs| {
            let mut alarms = unsafe { self.alarms.as_ref() }.borrow_ref_mut(cs);
            let alarm = &mut alarms[alarm.id() as usize];
            alarm.callback = callback as *const ();
            alarm.ctx = ctx;
        });
    }

    fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) -> bool {
        self.init();
        critical_section::with(|cs| {
            let mut alarms = unsafe { self.alarms.as_ref() }.borrow_ref_mut(cs);
            let alarm = &mut alarms[alarm.id() as usize];
            alarm.timestamp = timestamp;
            unsafe { self.signaler.as_ref() }.signal();
        });

        true
    }
}

struct Signaler {
    mutex: Mutex<bool>,
    condvar: Condvar,
}

impl Signaler {
    fn new() -> Self {
        Self {
            mutex: Mutex::new(false),
            condvar: Condvar::new(),
        }
    }

    fn wait_until(&self, until: StdInstant) {
        let mut signaled = self.mutex.lock().unwrap();
        while !*signaled {
            let now = StdInstant::now();

            if now >= until {
                break;
            }

            let dur = until - now;
            let (signaled2, timeout) = self.condvar.wait_timeout(signaled, dur).unwrap();
            signaled = signaled2;
            if timeout.timed_out() {
                break;
            }
        }
        *signaled = false;
    }

    fn signal(&self) {
        let mut signaled = self.mutex.lock().unwrap();
        *signaled = true;
        self.condvar.notify_one();
    }
}

pub(crate) struct UninitCell<T>(MaybeUninit<UnsafeCell<T>>);
unsafe impl<T> Send for UninitCell<T> {}
unsafe impl<T> Sync for UninitCell<T> {}

impl<T> UninitCell<T> {
    pub const fn uninit() -> Self {
        Self(MaybeUninit::uninit())
    }

    pub unsafe fn as_ptr(&self) -> *const T {
        (*self.0.as_ptr()).get()
    }

    pub unsafe fn as_mut_ptr(&self) -> *mut T {
        (*self.0.as_ptr()).get()
    }

    pub unsafe fn as_ref(&self) -> &T {
        &*self.as_ptr()
    }

    pub unsafe fn write(&self, val: T) {
        ptr::write(self.as_mut_ptr(), val)
    }
}

impl<T: Copy> UninitCell<T> {
    pub unsafe fn read(&self) -> T {
        ptr::read(self.as_mut_ptr())
    }
}