1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! Async mutex.
//!
//! This module provides a mutex that can be used to synchronize data between asynchronous tasks.
use core::cell::{RefCell, UnsafeCell};
use core::future::poll_fn;
use core::ops::{Deref, DerefMut};
use core::task::Poll;

use crate::blocking_mutex::raw::RawMutex;
use crate::blocking_mutex::Mutex as BlockingMutex;
use crate::waitqueue::WakerRegistration;

/// Error returned by [`Mutex::try_lock`]
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct TryLockError;

struct State {
    locked: bool,
    waker: WakerRegistration,
}

/// Async mutex.
///
/// The mutex is generic over a blocking [`RawMutex`](crate::blocking_mutex::raw::RawMutex).
/// The raw mutex is used to guard access to the internal "is locked" flag. It
/// is held for very short periods only, while locking and unlocking. It is *not* held
/// for the entire time the async Mutex is locked.
///
/// Which implementation you select depends on the context in which you're using the mutex.
///
/// Use [`CriticalSectionRawMutex`](crate::blocking_mutex::raw::CriticalSectionRawMutex) when data can be shared between threads and interrupts.
///
/// Use [`NoopRawMutex`](crate::blocking_mutex::raw::NoopRawMutex) when data is only shared between tasks running on the same executor.
///
/// Use [`ThreadModeRawMutex`](crate::blocking_mutex::raw::ThreadModeRawMutex) when data is shared between tasks running on the same executor but you want a singleton.
///
pub struct Mutex<M, T>
where
    M: RawMutex,
    T: ?Sized,
{
    state: BlockingMutex<M, RefCell<State>>,
    inner: UnsafeCell<T>,
}

unsafe impl<M: RawMutex + Send, T: ?Sized + Send> Send for Mutex<M, T> {}
unsafe impl<M: RawMutex + Sync, T: ?Sized + Send> Sync for Mutex<M, T> {}

/// Async mutex.
impl<M, T> Mutex<M, T>
where
    M: RawMutex,
{
    /// Create a new mutex with the given value.
    pub const fn new(value: T) -> Self {
        Self {
            inner: UnsafeCell::new(value),
            state: BlockingMutex::new(RefCell::new(State {
                locked: false,
                waker: WakerRegistration::new(),
            })),
        }
    }
}

impl<M, T> Mutex<M, T>
where
    M: RawMutex,
    T: ?Sized,
{
    /// Lock the mutex.
    ///
    /// This will wait for the mutex to be unlocked if it's already locked.
    pub async fn lock(&self) -> MutexGuard<'_, M, T> {
        poll_fn(|cx| {
            let ready = self.state.lock(|s| {
                let mut s = s.borrow_mut();
                if s.locked {
                    s.waker.register(cx.waker());
                    false
                } else {
                    s.locked = true;
                    true
                }
            });

            if ready {
                Poll::Ready(MutexGuard { mutex: self })
            } else {
                Poll::Pending
            }
        })
        .await
    }

    /// Attempt to immediately lock the mutex.
    ///
    /// If the mutex is already locked, this will return an error instead of waiting.
    pub fn try_lock(&self) -> Result<MutexGuard<'_, M, T>, TryLockError> {
        self.state.lock(|s| {
            let mut s = s.borrow_mut();
            if s.locked {
                Err(TryLockError)
            } else {
                s.locked = true;
                Ok(())
            }
        })?;

        Ok(MutexGuard { mutex: self })
    }

    /// Consumes this mutex, returning the underlying data.
    pub fn into_inner(self) -> T
    where
        T: Sized,
    {
        self.inner.into_inner()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the Mutex mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    pub fn get_mut(&mut self) -> &mut T {
        self.inner.get_mut()
    }
}

/// Async mutex guard.
///
/// Owning an instance of this type indicates having
/// successfully locked the mutex, and grants access to the contents.
///
/// Dropping it unlocks the mutex.
pub struct MutexGuard<'a, M, T>
where
    M: RawMutex,
    T: ?Sized,
{
    mutex: &'a Mutex<M, T>,
}

impl<'a, M, T> Drop for MutexGuard<'a, M, T>
where
    M: RawMutex,
    T: ?Sized,
{
    fn drop(&mut self) {
        self.mutex.state.lock(|s| {
            let mut s = unwrap!(s.try_borrow_mut());
            s.locked = false;
            s.waker.wake();
        })
    }
}

impl<'a, M, T> Deref for MutexGuard<'a, M, T>
where
    M: RawMutex,
    T: ?Sized,
{
    type Target = T;
    fn deref(&self) -> &Self::Target {
        // Safety: the MutexGuard represents exclusive access to the contents
        // of the mutex, so it's OK to get it.
        unsafe { &*(self.mutex.inner.get() as *const T) }
    }
}

impl<'a, M, T> DerefMut for MutexGuard<'a, M, T>
where
    M: RawMutex,
    T: ?Sized,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        // Safety: the MutexGuard represents exclusive access to the contents
        // of the mutex, so it's OK to get it.
        unsafe { &mut *(self.mutex.inner.get()) }
    }
}